以“人教版七年级第三章《一元一次方程》综合复习课”为教学内容,围绕本章所复习的知识,如何对学生的学习方法进行精心指导,培养学生的学习能力。
【复习目标】
1.了解一元一次方程及其相关概念.
2.能说出什么是方程的解,通过观察、归纳得出等式的性质,能利用它们探究一元一次方程的解法,会检验一个数是否是某个一元一次方程的解.
3.了解解方程的基本目标(使方程逐步转化为x=a的形式),熟悉解一元一次方程的一般步骤,掌握一元一次方程的解法,体会解法中蕴含的化归思想.
4.结合“实践与探索”,培养运用数学知识分析问题、解决问题的能力,提高创新能力.体会建立数学模型的思想,从而会找出简单应用题中的已知数、未知数和表示应用题全部含义的一个相等关系,列出需要的方程,进而求得应用题的解.会根据应用题的实际意义,检验求得的结果是否正确.
【重点、难点】
一元一次方程解法及其应用是本章的重点,难点则是列一元一次方程解应用题.关键是熟练地解一元一次方程,正确地列出一元一次方程解简单的应用题.
【思想方法】
1.化归思想
所谓化归的思想方法,是指在求解数学问题时,如果对当前的问题感到困惑,可把它进行变换,使之化繁为简,化难为易、化生疏为熟悉,从而使问题得以解决的思维方法.如本章解方程的过程,就是把形式比较复杂的方程,逐步化为最简方程ax=b(a≠o),从而求出方程的解.
2.方程思想方法
方程思想方法是把未知数看成已知数,让代替未知数的字母和已知数一样参加运算.这种思想方法是数学中常用的重要方法之一,是代数解法的重要标志.本章列方程解应用题,是方程思想的具体应用.
【知识点归纳】
一、方程的有关概念
1.方程:含有未知数的等式就叫做方程.
2. 一元一次方程:只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程.例如: 1700+50x=1800, 2(x+1.5x)=5等都是一元一次方程.
3.方程的解:使方程中等号左右两边相等的未知数的值,叫做方程的解.
注:⑴ 方程的解和解方程是不同的概念,方程的解实质上是求得的结果,它是一个数值(或几个数值),而解方程的含义是指求出方程的解或判断方程无解的过程. ⑵ 方程的解的检验方法,首先把未知数的值分别代入方程的左、右两边计算它们的值,其次比较两边的值是否相等从而得出结论.
二、等式的性质
等式的性质(1):等式两边都加上(或减去)同个数(或式子),结果仍相等.
等式的性质(1)用式子形式表示为:如果a=b,那么a±c=b±c
(2)等式的性质(2):等式两边乘同一个数,或除以同一个不为0的数,结果仍相等,等式的性质(2)用式子形式表示为:如果a=b,那么ac=bc;如果a=b(c≠0),那么=
三、移项法则:把等式一边的某项变号后移到另一边,叫做移项.
四、去括号法则
1.括号外的因数是正数,去括号后各项的符号与原括号内相应各项的符号相同.
2.括号外的因数是负数,去括号后各项的符号与原括号内相应各项的符号改变.
五、解方程的一般步骤
1.去分母(方程两边同乘各分母的最小公倍数)
2.去括号(按去括号法则和分配律)
3.移项(把含有未知数的项移到方程一边,其他项都移到方程的另一边,移项要变号)
4.合并(把方程化成ax = b (a≠0)形式)
5.系数化为1(在方程两边都除以未知数的系数a,得到方程的解x=).
六、用方程思想解决实际问题的一般步骤
1.审:审题,分析题中已知什么,求什么,明确各数量之间的关系.
2.设:设未知数(可分直接设法,间接设法)
3.列:根据题意列方程.
4.解:解出所列方程.
5.检:检验所求的解是否符合题意.
6.答:写出答案(有单位要注明答案)
七、有关常用应用类型题及各量之间的关系
1. 和、差、倍、分问题:
(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现.
(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现.
2. 等积变形问题:
“等积变形”是以形状改变而体积不变为前提.常用等量关系为:
①形状面积变了,周长没变;
②原料体积=成品体积.
3. 劳力调配问题:
这类问题要搞清人数的变化,常见题型有:
(1)既有调入又有调出;
(2)只有调入没有调出,调入部分变化,其余不变;
(3)只有调出没有调入,调出部分变化,其余不变
4. 数字问题
(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c.
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示.
5. 工程问题:
工程问题中的三个量及其关系为:工作总量=工作效率×工作时间
6.行程问题:
(1)行程问题中的三个基本量及其关系:路程=速度×时间.
(2)基本类型有
① 相遇问题;
② 追及问题;常见的还有:相背而行;行船问题;环形跑道问题.
7.商品销售问题
有关关系式:
商品利润=商品售价—商品进价=商品标价×折扣率—商品进价
商品利润率=商品利润/商品进价
商品售价=商品标价×折扣率
8. 储蓄问题
⑴ 顾客存入银行的钱叫做本金,银行付给顾客的酬金叫利息,本金和利息合称本息和,存入银行的时间叫做期数,利息与本金的比叫做利率.利息的20%付利息税
⑵ 利息=本金×利率×期数
本息和=本金+利息
利息税=利息×税率(20%)
【典型例题】
一、一元一次方程的有关概念
例1.一个一元一次方程的解为2,请写出这个一元一次方程 .
分析与解:这是一道开放性试题,答案不唯一.如x=1,x-2=0等等.
【点拨】 解答这类开放性问题时要敢于大胆猜想,然后利用一元一次方程的定义与解来完成.
二、一元一次方程的解
例2.若关于的一元一次方程的解是 ,则的值是( )
a. b.1 c. d.0
分析:根据方程解的定义,一元一次方程的解能使方程左、右两边的值相等,把x=-1代入原方程得到一个关于k的一元一次方程,解这个方程即可得到k的值.
解:把x=-1代入中得,-=1,解得:k=1.答案为b.
【点拨】根据方程解的概念,直接把方程的解代入即可.
三、一元一次方程的解法
例3.如果 ,那么等于( )
(a)1814.55 (b)1824.55 (c)1774.45 (d)1784.45
分析与解:移项,得2005-200.5+20.05=x,解得:x=1824.55.答案为a.
【点拨】由于一元一次方程的形式、结构多种多样,所以在解一元一次方程时除了要灵活运用解一元一次方程的步骤外,还要根据方程的特定结构运用适当的解题技巧,只有这样才能降低解题难度.
例4. {[(x-1)-3]-3}=3
分析:观察本题中各个系数的特点,可以选择由外到内去括号的方法,从而可以一次性去掉大括号和中括号,既简化了解题过程,又能避开一些常见解题错误的发生.
解:去大括号,得 [(x-1)-3]-2=3
去中括号,得(x-1)-3-2=3
去小括号,得x--3-2=3
移项,得x=+3+2+3
合并,得x=
系数化为1,得:x = 17
四、一元一次方程的实际应用
例5.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.
(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;
(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.
分析:可以先设1个小餐厅可供名学生就餐,这样的话,2个小餐厅就可供2y个学生就餐,因此大餐厅就可共(1680-2y)名学生就餐.然后在根据开放2个大餐厅、1个小餐厅可以就餐的人数列出方程2(1680-2y)+y=2280
解:(1)设1个小餐厅可供名学生就餐,则1个大餐厅可供(1680-2y)名学生就餐,根据题意,得
2(1680-2y)+y=2280
解得:y=360(名)
所以1680-2y=960(名)
答:(略).
(2)因为,
所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.
【点拨】第⑴问属于直接列方程解应用题,而第⑵问属于说理题,关键是求出这7个餐厅共能容纳多少人就餐,然后比较即可.
例6.工艺商场按标价销售某种工艺品时,每件可获利45元;按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等.该工艺品每件的进价、标价分别是多少元?
分析:根据利润=售价-进价与售价=标价×折扣率这两个等量关系以及按标价的八五折销售该工艺品8件与将标价降低35元销售该工艺品12件所获利润相等,就可以列出一元一次方程.
解:设该工艺品每件的进价是元,标价是(45+x)元.依题意,得:
8(45+x)×0.85-8x=(45+x-35)×12-12x
解得:x=155(元)
所以45+x=200(元)
答:(略).
【点拨】这是销售问题,在解答销售问题时把握下列关系即可:
商品售价=商品标价×折扣率
商品利润=商品售价—商品进价=商品标价×折数—商品进价
商品利润率=×100%
例7.(2006·益阳市)八年级三班在召开期末总结表彰会前,班主任安排班长李小波去商店买奖品,下面是李小波与售货员的对话:
李小波:阿姨,您好!
售货员:同学,你好,想买点什么?
李小波:我只有100元,请帮我安排买10支钢笔和15本笔记本.
售货员:好,每支钢笔比每本笔记本贵2元,退你5元,请清点好,再见.
根据这段对话,你能算出钢笔和笔记本的单价各是多少吗?
分析:这是一道情景对话问题,具有一定的新颖性.解答这类问题的关键是要从对话中捕捉等量关系.从对话中可以知道每支钢笔比每本笔记本贵2元,同时还可以发现买10支钢笔和15本笔记本共消费(100-5)=95元.根据上述等量关系可以得到相应的方程.
解:设笔记本每本x元,则钢笔每支为(x+2)元,据题意得
10(x+2)+15x=100-5
解得,x=3(元)
所以x+2=5(元)
答:(略).
【点拨】在情景问题应用中,捕捉等量关系是关键.